Future of industrial design

The first step in engineering a breakthrough starts with creating a prototype.
And, because advanced energy solutions today require sophisticated designs and geometries, researchers are increasingly turning to 3D printing to develop those early models. Even the most dexterous hands cannot match the intricate designs from these printers.
At ExxonMobil, technicians in the company’s advanced 3D printing laboratory are forming new acrylic, metal and ceramic spirals and other shapes that are instrumental in larger energy systems.
Nothing speaks to this cutting-edge process like 3D printing being used as a rapid prototyping tool for the development of cMIST™ technology. The cMIST system removes impurities like H2O, CO2 and H2S from natural gas production to achieve safety and gas quality standards.
Specifically, the cMIST system has a droplet generator which produces fine droplets of the solvent, well dispersed in the gas, allowing for more efficient processing. These droplet generators start their lives in the 3D printer (as seen below) as prototypes that get tested extensively for performance and reliability.





The 3D printing team was able to quickly roll out models of that cMIST droplet generator, allowing the design engineers to make swift optimizations.




This futuristic printing shop produced an intricate, sophisticated droplet generator. That small piece will be a key component to enable greater production of cleaner-burning natural gas in unconventional reservoirs and challenging offshore deepwater locations.

Creating gasoline today that will fuel cars of tomorrow

It sounds like the stuff of movies and sci-fi novels, but in a small pilot lab in Clinton, New Jersey, an elite group of ExxonMobil engineers is developing gasoline of the future. Creating fuel for cars that aren’t even on the market seems outrageous—impossible, even—but it’s happening now.
But how do these scientists know what to make? It’s because the brightest minds in science and engineering are also excellent problem solvers.
The challenge in this case is that by 2040 there will be 1.8 billion cars, light trucks and SUVs in the world, up from 1 billion now. Since a major focus for governmental entities and energy producers will be on reducing carbon-intensive output, ExxonMobil looked straight at the heart of the automobile and its source of power: the engine.
“Society expects higher fuel economy but still wants acceleration power,” says Nazeer Bhore, manager of lead generation and downstream breakthrough research at ExxonMobil.
Taking into account the desires of the consumer is largely what led Bhore and his team to their ah-hah idea: making fuels of the future for tomorrow’s advanced turbochargers.




If you’ve driven a fuel-efficient vehicle lately, you may have noticed that the acceleration feature leaves something to be desired. Fuel-efficient engines are smaller than engines of typical cars and trucks, so they lose power. A turbocharger gives the engine that power back. Though turbochargers may seem like gas guzzlers, given the way they launch a car forward, they actually save energy by utilizing the engine’s exhaust gas and feeding it back to the engine when the driver accelerates.
So, since the vast majority of new vehicles on the road will still run on gasoline or diesel, automakers are making customized, more fuel-efficient engines that will require the right gas to match. The gasoline ExxonMobil engineers are developing today, therefore, is being adapted to fit the needs of the turbocharged engine in the future.
Even though creating new fuels is a specialty of ExxonMobil, some may consider a 30-year projection to be an overreach. “It’s a calculated risk, but technology is changing, and what was not possible yesterday is now possible today,” Bhore explains. Scientists in ExxonMobil’s New Jersey labs are making it a priority.
One thing’s for certain: The next-generation fuels and lubricants brewing in ExxonMobil’s pilot labs meet the central tenet of fuel efficiency—the ability to do more with less, for more people.

DNA authentication program raises the bar for quality and traceability

With a unique herbarium, a new “DNA Tested” seal, and exclusive access to “breakthrough” handheld genomic technology for botanical ID testing, Indena is “giving a pragmatic solution to the industry”, says the company’s marketing director.



DNA analysis offers a lot of potential for botanical testing, and is incredibly reliable,​ but only when performed on appropriate material: A DNA test cannot be universally applied to botanical extracts because DNA must still be present after the manufacturing steps, which is not always the case. The technology dominated trade media headlines in 2015 and early 2016 after NY AG Eric Schneiderman used it to build cases against a number of retailers of herbal supplements.​
“We were applying this technology to potentially problematic species years before Schneiderman came along,” ​Cosimo Palumbo, Indena’s Marketing Director, told NutraIngredients-USA.
Indeed, the company, working with Dr Pietro Piffanelli from the Parco Tecnologico Padano (PTP) in Lodi, northern Italy, presented a poster at the International Symposium of AOAC Europe Section in Nuremberg in 2011 which applied DNA fingerprint analysis to eight species of Echinacea found in North America*.
Reference standards​


One of the criticisms of DNA technology in the past has been around the reference standards – or lack thereof.
While some may point to GenBank​ – the NIH’s database that collects all publicly available genetic sequences – as a reference library, many experts note that it is not an acceptable standard (for example, samples may be misidentified or data may be missing).
Dr Piffanelli told attendees at the recent Vitafoods education sessions in Geneva that Genbank contains potential mistakes in the attribution of DNA sequences to specific plant species. “DNA barcoding is robust and reproducible, and it makes a decisive contribution to the certification of the origin of raw materials and finished products [if DNA is still present after manufacturing],”​ said Dr Piffanelli. “But it is of paramount importance to have certified pure samples to derive the reference DNA sequences.”​
“Herbarium vouchers are ideal and with 95 years of experience we have a unique herbarium,”​ noted Indena’s Palumbo.
Next Gen Sequencing​


There are different types of DNA testing methods: One technique is called Sanger Sequencing, but a paper published in PLOS One​​ by scientists from the University of Guelph concluded: “Sanger sequencing should not be used for testing herbal supplements, due to its inability to resolve mixed signal from samples containing multiple species. NGS-based approaches are far more superior, enabling reliable and effective detection of DNA in complex mixtures.”​
Plants and DNA


Plants have three genomes: Chloroplast DNA and mitochondrion DNA, which are inherited from one parent, usually the female; and nuclear DNA, which is inherited from both parents.
Indena’s DNA-based technologies play an important role in quality control procedures in the dietary supplement industry when embedded in a complete testing toolbox that provides a reliable authentication platform of herbal products, explained Palumbo.
“NGS technologies are based upon high-throughput decoding of all DNA present in a given extract,” ​he said. “NGS technologies handle millions of small fragments of DNA on the basis of an untargeted approach that generates valuable data to assess the presence of adulterants and assign all product’s ingredients at the species level. Indena is working to validate proper DNA-based technologies to include these tests also on the final extracts.​


The biggest numbers game in the power sector: Data analytics and the utility community of the future

Software and data are transforming the utility industry and connecting energy users.
One of this century’s most important innovations is the emerging data analytics capabilities that are allowing utilities to use archived and real-time data to make systems more reliable, affordable and clean.
Cost-effective electricity generation from variable renewables is allowing new clean transportation and other electrification initiatives. But they will make the resulting clean energy economy dependent on a burgeoning and complex power system. Automated data analytics can provide the granular, real-time situational awareness to effectively manage it.



Planning for a Distributed Energy Future
Take an in-depth look at how utilities, consumers, and regulators view the impact of the rapid proliferation of DERs on the grid and utility operations.
The use cases for data analytics are wide-ranging and proliferating. Data analytics-based weather forecasting is prompting pre-hardening of systems against extreme weather events. Data analytics are delivering new services and savings to customers through utility-led energy efficiency programs that cut customer bills and lower utilities’ system costs. In addition, digital simulations are perfecting new hardware before it is installed.



The unprecedented interconnectedness of systems and available computational power through the cloud are allowing new system-wide data analytics application, the era of siloed utilities is over, and executives are working on creating high fidelity, high quality data structured to be used throughout the company.
No one software will be the answer, as increasing amounts of data and system integration are layered and analyzed by artificial intelligence (AI) with machine learning, he added.
That will lead to the next stage in data analytics in which a utility community pools data and computing power for the deep machine learning AI requires, this will allow shared, curated data and a secure platform to develop solution algorithms.
Data analytics can ultimately lead to a decentralized network that allows peer-to-peer energy transactions in a connected community, energy sector analysts told Utility Dive. But utilities must first fully assimilate and integrate the data and its capabilities.


Solar panel efficiency: what you need to know

Simply put, solar panel efficiency (expressed as a percentage) quantifies a solar panel’s ability to convert sunlight into electricity. Given the same amount of sunlight shining for the same duration of time on two solar panels with different efficiency ratings, the more efficient panel will produce more electricity than the less efficient panel.
In practical terms, for two solar panels of the same physical size, if one has a 21% efficiency rating and the other has a 14% efficiency rating, the 21% efficient panel will produce 50% more kilowatt hours (kWh) of electricity under the same conditions as the 14% efficient panel. Thus, maximizing energy use and bill savings is heavily reliant on having top-tier solar panel efficiency.
Many consumers and people in the solar industry consider solar panel efficiency to be the most important criterion when assessing a solar panel’s quality. While it is an important criterion, it’s not the only one to consider while you evaluate whether to install a particular solar panel. Solar panel efficiency relates to the ability of the panel to convert energy at a low cost and high supply rate.



Most efficient solar panels: the top 5
Here are the top five best solar panel manufacturers in 2019 ranked based on the highest efficiency solar panel they have to offer:
SunPower (22.2%)
LG (21.1%)
Solartech Universal (20.2%)
Silfab (20.0%)
Solaria (19.4%)
The most efficient solar panels on the market today have efficiency ratings as high as 22.2%, whereas the majority of panels range from 15% to 17% efficiency rating. SunPower panels are known for being the most efficient solar panel brand available on the market. Though they will come with a higher price tag, SunPower will often be the consumer favorite for anyone concerned with efficiency as a primal metric of interest. However, check out Exhibit 1 to learn about all the top brands and the most efficient solar panels you can get your hands on.
Looking for the most efficient solar panels on the market? Get free solar quotes on the EnergySage Marketplace for top quality solar equipment.
Maximum Production or Maximum Offset: If your goal is to maximize the amount of electricity your system produces or want to ensure you buy the least amount of electricity from the utility, but the amount of roof space you have available to install solar panels is limited in size, you may choose to install higher efficiency solar panels. This will ensure you get the maximum production from your solar panel system.
Cost vs. Value:  More efficient solar panels tend to cost more than their less efficient counterparts. You may want to analyze whether that upfront cost difference is justified by the increased saving achieved by generating more electricity over the lifespan of your solar energy system. Increased electricity production means you have to buy less power from your utility and in some states, may also generate higher SREC income. The EnergySage Solar Marketplace makes it easy for you to easily compare your savings from solar panels that vary in their efficiency ratings and if their premium price is justified.

Reciprocating Still, New Designs in Alcohol Distillers

The basic concept of a Reciprocation Still is similar to that of a hybrid pot-column still, but the main kettle splits into two equal halves. Each kettle can be heated and operated independently, with both feeding to a shared column.
Based on the modular nature of the system, the distiller can break the still down into a couple of smaller stills that will allow for more flexibility, the distiller could execute brandy and whiskey program simultaneously without having to clean the still between each type of spirit run.
The nature of the design also leads to believe that a higher quality of distillate is actually possible if the kettles are used together. The two colliding streams of vapor from the two kettles would create greater reflux.  This would essentially allow for additional purification of the vapor before it even reached the shared column.
The majority of the still consists of stainless steel, with copper reserved for bubble plates and caps housed in the column. Copper is only needed for that vapor interaction.  As a result, it doesn’t reduce distillate quality to manufacture the still in such a fashion. In fact, many of those aforementioned massive column stills follow the same principle. A newer design of the Reciprocator has evolved a bit. A separate, small copper head covers each stainless kettle, with both still feeding to a shared column.



The dual nature of the design adds a great deal of convenience and flexibility for the craft distiller, who’s often producing a diverse range of spirits. Logistically, it’s a more efficient system, reducing energy needs as it’s faster to heat two smaller kettles as opposed to one larger kettle. This saves both time and money.
There are many benefits as well. Made primarily with stainless steel, it’s more affordable to produce than an all-copper still.  Additionally, it has a longer working life span. The rig can produce spirit up to approximately 160 proof on a single run, once again offering efficiency and flexibility. It also happens to be unique and eye-catching. With new craft distilleries popping up by the day, standing out from the crowd in any fashion isn’t a bad idea.
As craft distilleries push the boundaries with different mash bills, barrel types and sizes, and nearly every other facet of whiskey and spirits production, it’s no surprise that innovation is cropping up with the stills as well, and for which IESG ENGINEERING LLC keeping working hard to ti improve this design.

Implementation of new technologies in traditional processes

The installation of new technologies implies that the product quality stays the same in any circumstance / all circumstances. The replacement or the extension of the capacity of existing traditional wash stills often lead to new designs under an economic aspect. Economics are often feasible – besides energetically optimization – in the minimizing of the product losses.
With our references in the drinking and power alcohol market we can show outstanding experience using raw materials from different origin. As high capacities are relevant the importance of energy saving processes is emphasized. Our heat integrated processes make use of sophisticated concepts such as mechanical vapor recompression, multi stage distillation and evaporation, heat optimized mashing systems and so forth.
All applied concepts respect the possibility of state-of-the-art technologies without overstressing, as a stable running process is one of our main focusses.
We take over the responsibility for the process mass- and energy balance from the milling to the final products, e.g. alcohol according to specification or DDGS (Dried Distillers Grains with soluble).
The spent residues that result as by-products from fermentation processes from alcohol production are generally called spent wash, vinasse or stillage. These thin liquor stillages contain all the nutrients of the raw materials except for their fermented starch and sugars: i.e. they contain proteins, fat, fiber, minerals etc. in greater concentrations than were present in the original raw material. These liquors can therefore be processed into added-value animal feeds by concentration and, if necessary, drying and crystallization and precipitation of certain seals (e.g. potassium, sodium).
IESG Engineering LLC design allows our clients to create additional value added by-products.


The industry itself has led to new initiatives like the SUPPLEMENT OWL, Good Agricultural and Collection Practices and Good Manufacturing Practices for Botanicals materials, Supplement Compliances Initiative (SSCI), Global Retailer and Manufacturing Alliance (GRMA), and the Botanical Adulterant Program, transparency will only become more prominent.
DNA Analysis has really come to the fore for a numbers of organizations and companies, despite many industry stakeholders continuing to note its limitations.
The NHP business alliance will also bring together industry leaders, regulators and consumers for the development of new industry testing standards, using reliable, affordable DNA-based tools.
Innovative Genomic Analysis are also being applied to medicinal plants used in traditional Chinese Medicine (TCM). A joint venture was announced last year by US-based DNA research firm Illumina and the Institute of Medicinal Plant Development (IMPLAD), based in Beijing.
Some Botanical ingredients suppliers themselves have been developing innovative techniques and embracing novel technology to illustrate their commitment to quality and supply chain integrity. For example, Indena has agreed a strategic cooperation with UK- Based biotech Hyris based on unique sets of reagents for specific DNA sequences (Known as BKITs) and they use a miniaturized portable device for the analysis of nucleic acids (known as the bCUBE).
Probiotic is another obvious category that is applying DNA-based technology, with companies like Dupont driving use of the technology for both identification and enumeration of the microorganisms. While standards PCR (polymerase chain reaction methods can identify strains but not enumerate, Dupont developed a digital PCR method to quantify live cells in a blend, while using power of PCR to identify the strains simultaneously. A proof of concepts was performed with a blend of three L. plantarumstrains.
Moving on the supply chain and quality side of the industry, there are also a number of area that particularly excite and fascinate me, including the microbiome, probiotics and prebiotics, anti-aging (longevity); beauty from within; nootropics, adaptogens, and a few specific ingredients in particular.
Starting with the microbiome, probiotics supplements are outpacing growth in other types of supplements. We have moved well beyond just digestive health, brain health, immune support, weight management, and so on.
There is even research underway in the community to mine the gut microbiota of elite athletes for potential new probiotics (the gut microbiomes of athletes are more diverse than non-athletes).
IESG ENGINEERING LLC has worked in developing new Supplements exploring opportunities there, from immune support to reducing post exercise inflammation and boosting recovery, enhancing protein absorption, antiaging, improve brain health, reduce digestive illness, and we are happy to keep our high quality industrial manufacturing active to develop more products.


In the past several years, biotechnology in the food industry has been the central theme of numerous scientific reviews, national and international symposia, and several major reference works (Earle, 1984; Harlander and Labuza, 1986; Jarvis and Holmes, 1982; Kirsop, 1985; Knorr, 1987; Knorr and Sinskey, 1985; Moo-Young et al., 1985; Rehm and Reed, 1983). Reports of significant advances have come from the full spectrum of biotechnology research and development resources: universities and institutes as well as genetic “biotiques” and large food corporations. Important business alliances continue to be formed on a worldwide scale, linking advanced biotechnology research skills with large producers and marketers of food products, principally in the United States, Japan, the United Kingdom, and Europe. These alliances include Amgen/Kodak, CalBio/American Home Products, Genentech/Lilly, Genentech/Corning (Genencor), Interferon/Anheuser-Busch, Molecular Genetics/Upjohn, Synergen/Procter & Gamble, American Cyanamid/Pioneer Hi-Bred, Dupont/Advanced Genetic Sciences, W. R. Grace/ Cetus (Agricetus), Hoechst/Harvard, Monsanto/Genentech, Monsanto/Washington University/Rockefeller University, Roche/Agrigenetics, Beatrice/Ingene, Campbell/DNA Plant Technology (DNAP), Campbell/Calgene, CPC/Enzyme Biosystems, Kraft/DNAP, General Foods/DNAP, Kellogg/ Agrigenetics, Heinz/ARCO, McCormick/Native Plants, Inc., Molson/Allelix, RJR-Nabisco/Escagen, and Seagram/Biotechnica. Corporate boards and strategic planning groups of major food companies now understand the language of biotechnology and can perceive its utility and value; this has been the case with their corporate research departments for years. One thing is clear: The excitement and enthusiasm for biotechnology so characteristic of the pharmaceutical and medical areas in the early 1980s have now begun to hit the food industry with increasing force, and this momentum will likely establish this industry as the largest commercial arena for biotechnology. Companies involved include Archer Daniels Midland, American Home Products, Beatrice, Campbell, Cargill, Corn Products Company, Coors, Chr. Hansen’s Laboratory, Firmenich, General Foods, Heinz, Hunt-Wesson, Kraft, LaBatt, McCormick, Nestle, Pillsbury, Purdue, Procter & Gamble, Ralston, RJR-Nabisco, Staley, Unilever, IESG Engineering LLC, and Universal Foods.
At least three important factors are responsible for this. First, in pharmaceuticals, the feasibility of the biotechnology promise has been established and the commercial reduction to practice (i.e., commercial application) is in place in the marketplace. This was achieved by using many of the same technical concepts and strategies currently envisioned for food industry applications. Second, key advancements in technology continue to be made, principally in molecular genetics, cell technologies, computer-aided protein engineering, bioreactor design, and biosensor/diagnostic technology. These advancements have substantially redefined the technical skills base and broadened the potential applications of biotechnology to foods. Third, within the food industry, reports of successful new applications of biotechnology (e.g., those reported here) add confidence to the prediction that biotechnology may well be the next key source of competitive leverage at the corporate and international levels, and may be the most important single technical consideration in consolidation strategies.
The following paragraphs are a review of new applications of biotechnology in each of the following food-related areas: enzymes, including the processing of cheese; fermentation, including brewing and wine making; agricultural raw materials (e.g., crop plants, meat, poultry, fish) with improved functionality; and plant cell bioreactors for food ingredient production.
IESG Engineering LLC is been working in a variety of biotechnology projects and we are thrilled to be part of a business that is impacting so well in our development as a society.

Biotechnology Applications in Beverage Production

Beverage production is among the oldest, though quantitatively most significant, applications of biotechnology methods, based on the use of microorganisms and enzymes. Manufacturing processes employed in beverage production, originally typically empirical, have become a sector of growing economic importance in the food industry. Pasteur’s work represented the starting point for technological evolution in this field, and over the last hundred years progress in scientifically based research has been intense. This scientific and technological evolution is the direct result of the encounter between various disciplines (chemistry, biology, engineering, etc.). Beverage production now exploits all the various features of first and second-generation biotechnology: screening and selective improvement of microorganisms; their mutations; their use in genetic engineering methods; fermentation control; control of enzymatic processes, including industrial plants; use of soluble enzymes and immobilized enzyme reactors; development of waste treatment processes and so on. Research developments involving the use of biotechnology for the purpose of improving yields, solving quality-related problems and stimulating innovation are of particular and growing interest as far as production is concerned. Indeed, quality is the final result of the regulation of microbiological and enzymatic processes, and innovation is a consequence of improved knowledge of useful fermentations and the availability of new ingredients. IESG Engineering’s projects are working to led to the contributions to this industry as a clear evidence of the growing need for adequate information about scientific and technological progress.